
 1

SCR:  A PRACTICAL METHOD
FOR   REQUIREMENTS 

SPECIFICATION
Constance Heitmeyer, Naval Research 

Laboratory, Washington, DC

Abstract
A controversial issue in the formal

methods research community is the degree to
which mathematical sophistication and theorem
proving skills should be needed to apply a
formal method.  A premise of this paper is that
formal methods research has produced several
techniques with potential utility in practical
software development, but that mathematical
sophistication and theorem proving skills
should not be prerequisites for using these
techniques.  In the paper, several attributes
needed to make a formal method useful in
practice are described.  These attributes include
user-friendly notation, automated (i.e., push-
button) analysis, and easy to understand
feedback.  To illustrate the  attributes of a
practical formal method, a formal method for
requirements specification called SCR
(Software Cost Reduction) is introduced.

Formal Methods in Practice:  Current 
Status

During the last decade, researchers have
proposed numerous formal methods for
developing computer systems.  These include
formal specification languages and formal
analysis techniques, such as model checkers
and mechanical theorem provers.  One area in
which formal methods have already had a major
impact is hardware design. Not only are
companies such as Intel beginning to use model
checking, along with simulation, as a standard
technique for detecting design errors, in
addition, some companies are developing their
own in-house model checkers. Moreover, a
number of  model checkers  customized for
hardware design have become available
commercially.

In contrast, the use of formal methods in
practical software development is rare.  A
significant barrier is the widespread perception
among software developers that formal
notations and formal analysis techniques are
difficult to understand and apply. Many

software developers also express  serious
doubts about the scalability and cost-
effectiveness of formal methods.  

An additional reason for the minimal
impact of formal methods in software
development is the  absence in most software
development processes of two features common
in hardware design.  First,  hardware designers
routinely use one of a small group of languages,
e.g., Verilog or VHDL, to specify their designs.
In contrast, precise specification and design
languages are rarely used in software
development.

Second, at hardware companies,
integrating a formal method, such as a model
checker, into the design process is relatively
easy because other tools, such as simulators and
code synthesis tools, are already a standard part
of the design process.  In software development,
in contrast, no standard engineering process
exists.  For example, although “object-oriented
design” (OOD) has become quite popular in
recent years, OOD is still largely informal.
Moreover, despite the recent availability of
commercial CASE (Computer-Aided Software
Engineering) tools, software developers rarely
use CASE tools during the early stages of
software development when such tools (and
formal methods) have the greatest benefits.

While formal methods have significant
potential for reducing software development
costs and increasing software quality, the above
barriers must be overcome before these benefits
can be realized. Below, I recommend several
improvements needed before formal methods
can be useful in practical software
development.  I then introduce the SCR
requirements method, an example of how
formal methods can be used in practice.

Toward Practical  Formal Methods
Described below are four general areas

in which improvements in formal methods are
needed.  While most can be achieved by better
engineering, in some cases, additional research
is needed.

Minimize Effort and Expertise Needed to Apply 
the Method

To be useful in practice,  formal
methods must be convenient and easy to use.
Currently, most software developers are
reluctant to use formal methods because they
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find the learning curve too steep and the effort
required to apply the method too great.  In many
cases, deciding not to use  a formal method is
rational.  The time and effort required to learn
about and apply a formal method may not be
worth the information and insight provided by
the method; in some cases, the effort could be
better spent applying another method, such as
simulation.  Suggested below are three ways in
which the difficulty of learning and applying a
formal method can be reduced.

•Offer a language that software
developers find “natural”. To the
extent feasible, a language syntax and
semantics  familiar to the software
practitioner should be supported. The
language should have an explicitly
defined formal semantics and should
scale.  Specifications in the language
should  be translated automatically
into the language of a formal analysis
tool, such as a model checker. 

•Make formal analysis as automatic as
possible. To the extent feasible,
analysis should be “push-button”, that
is, the user should be able to invoke an
analysis technique with the mere push
of a button.

•Provide good feedback. When formal
analysis exposes an error, the user
should be provided with easy-to-
understand feedback useful in
correcting the error.

Provide a Suite of Analysis Tools
Because different tools detect different

classes of errors, users should have available a
“complete” suite of tools, carefully integrated
to work together.  Many hardware designers are
already using suites of tools, such as simulators,
model checkers, equivalence checkers, and
code synthesis tools.  One benefit of a suite of
tools is that properties shown to hold using one
tool may simplify the analysis performed by a
second tool.  For example, demonstrating  that
the specified system behavior is deterministic
can simplify later analysis of the behavior with
a model checker.  

Integrate the Method into the User's Software 
Development Process

To the extent feasible, formal methods
should be integrated into the existing user
design process.  Techniques for exploiting

formal methods in object-oriented software
design and in software development processes
which use semiformal languages, such as
Statecharts, should also be explored.  How
formal methods can be integrated into the user's
design process should be described explicitly.

Provide a Powerful, Customizable Simulation 
Capability

Many researchers underestimate the
value of simulation in exposing defects in
software specifications.  Unlike formal
techniques which check the specification for
properties of interest, simulation helps the user
validate the specification.  By using the
simulator to symbolically execute the  system,
the user can ensure that the specified behavior
captures his intent.  One promising approach to
selling formal methods is to build customized
simulator front-ends, tailored to particular
application domains.  Such customized
simulators can serve as system “prototypes”,
useful in demonstrating and analyzing the
required system behavior prior to coding.

The SCR Requirements Method
The SCR (Software Cost Reduction)

requirements method is a formal method based
on tables for specifying the requirements of
safety-critical software systems.  Originally
formulated in 1978 by NRL (Naval Research
Laboratory) researchers to document the
Operational Flight Program (OFP) requirements
of the US Navy's A-7 aircraft, SCR has been
used in practice by numerous organizations,
including Grumann, Ontario Hydro, Bell
Laboratories, and Lockheed, to specify software
requirements. 

The SCR method uses a tabular notation
to specify requirements.  Underlying the tabular
notation is a state machine semantics.
Specifications based on tables are relatively
easy for software practitioners to understand
and to produce.  In addition, tables provide a
precise, unambiguous basis for communication
among practitioners and a natural organization
for independent construction, review,
modification, and analysis of parts of a large
specification.   Finally, tabular notations scale.
Evidence of the scalability of tabular
specifications has been demonstrated by
engineers at Lockheed, who used SCR-style
tables to specify the complete requirements of
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the C-130J OFP, a program containing over
230K lines of Ada.

The SCR Toolset
Introduced in 1995, SCR* is an

integrated suite of tools supporting the SCR
requirements method.  The toolset includes a
specification editor for creating a requirements
specification, a dependency graph browser for
displaying the variable dependencies in the
specification, a consistency checker  for
detecting errors such as type errors and missing
cases, a simulator  for validating the
specification, and a model checker  for
checking application properties.  Currently,
more than 50 commercial, academic, and
government institutions in the US, Canada, UK,
and Germany,  are experimenting with SCR*.

Specification Editor
To create, modify, or display a

requirements specification, the user invokes the
specification editor.  Each SCR  specification is
organized into dictionaries and tables.  The
dictionaries define the static information in the
specification, such as the user-defined types and
the names and values of variables and
constants. The tables specify how the variables
change in response to input events. One
important class of tables specifies the values of
the system outputs.

Dependency Graph Browser
 Understanding the relationship between

different parts of a large specification can be
difficult. To address this problem, the
Dependency Graph Browser represents the
dependencies among the variables in a given
SCR specification as a directed graph.  By
examining this graph, a user can detect errors,
such as undefined variables and circular
definitions.  The user can also use the DGB to
display and extract parts of the dependency
graph, e.g., the subgraph containing all
variables upon which a selected controlled
variable depends. 

Consistency Checker
The consistency checker detects syntax

and type errors, variable name discrepancies,
missing cases, unwanted nondeterminism, and
circular definitions. When an error is detected,
the consistency checker provides detailed
feedback to facilitate error correction by

displaying the table (or dictionary) containing
the error and highlighting the erroneous entries.
It also provides a “counterexample”, i.e., an
example that demonstrates the error.  A form of
static analysis, consistency checking is usually
less expensive computationally than model
checking.  In developing an SCR specification,
the user normally invokes the consistency
checker first and postpones more expensive
analysis, such as model checking, until later.
Exploiting the special properties guaranteed by
consistency checking (e.g., determinism) can
make later analyses more efficient.

Simulator
 To validate a specification, the user can

run the simulator and analyze the results to
ensure that the specification captures the
intended behavior.  Additionally, the user can
define properties believed to be true of the
required behavior and, using simulation,
execute a series of scenarios to determine if any
violate the properties.

The simulator supports the construction
of front-ends, tailored to particular application
domains.  One example is a customized front-
end for pilots to use in evaluating an attack
aircraft  specification (see Figure 1). Rather
than clicking on variable names, entering values
for them, and seeing the results of simulation
presented as variable values, a pilot clicks on
visual representations of cockpit controls and
views the results on a simulated cockpit display.
This front-end allows the pilot to move out of
the world of requirements specification and into
the world of attack aircraft, where he is the
expert.  Such an interface facilitates validation
of the specification.  

Model Checker
Recently, the explicit state model

checker Spin was integrated into SCR*.  After
using the SCR tools to develop a requirements
specification, a developer can automatically
translate the specification into Promela, the
language of Spin, and then invoke Spin within
the toolset to check that the specification
satisfies properties of interest.  The user can use
the simulator to demonstrate and validate any
property violation detected by Spin.  

The number of reachable states in a state
machine model of real-world software is
usually very large, sometimes infinite.  To make
model checking practical, three push-button
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techniques have been developed which derive
sound abstractions from SCR specifications.
The methods are practical:  none requires
ingenuity on the user's part, and each derives a
smaller, more abstract specification
automatically. For example, prior to invoking
Spin to check a weapons system specification
for a safety property, we used our abstraction
methods to automatically reduce the number of
variables from  over 250 to 55 and to replace
several real-valued variables with finite-valued
variables.  Without these reductions in the
number of variables and the type sets of the
real-valued variables, model checking would be
infeasible.  

Practical Use of the SCR Tools
To date, the SCR tools have been

applied in three pilot projects external to NRL.
In the first, researchers at NASA's IV &V
Facility used SCR* to detect missing cases and
instances of nondeterminism in the prose
requirements specification of software for the
International Space Station.  In the second
project, engineers at Rockwell-Collins used the
tools to expose 24 errors, many of them serious,
in the requirements specification of an example
flight guidance system.  Of the detected errors,
a third were uncovered by entering the
specification into the toolset, a third in running
the consistency checker, and the remaining
third in executing the specification with the
simulator.  In a third project, researchers at the
JPL (Jet Propulsion Laboratory) used SCR* to
analyze specifications of two components of
NASA's Deep Space-1 spacecraft for errors.

In a fourth pilot project,  NRL applied
the SCR tools to a sizable contractor-produced
requirements specification of the Weapons
Control Panel (WCP) for a safety-critical US
military system.  The tools uncovered numerous
errors in the contractor specification, including
a safety violation which could result in the
malfunction of a weapon. Translating the
contractor specification into the SCR tabular
notation, using SCR* to detect specification
errors, and building a working prototype of the
WCP required only one person-month, thus

demonstrating the utility and cost-effectiveness
of the SCR method. 

Conclusions
The SCR tools can be distinguished in

three major ways from commercial tools and
other research tools. First, unlike most
commercial tools for requirements
specification, SCR* has a solid mathematical
foundation, thus allowing mathematically
sound analyses, such as consistency checking
and model checking, unsupported by current
CASE tools. Second, the SCR tools, unlike
most research tools, have a well-designed user
interface, are integrated to work together, and
provide detailed feedback when errors are
detected to facilitate their correction.  Finally,
users of SCR* can do considerable analysis
without interaction with application experts or
formal methods researchers, thereby providing
formal methods usage at low cost.

Figure 1. Customized Simulator Front-End for 
an Aircraft Specification


